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Abstract. We classify the unitary irreducible representations of the qoseillator algebra 
bb' - q2b+b = 1 by the sign of the definite operator K = bb' - b'b K > 0 corresponds to 
Fock represen~ons and K c 0 to non-Fock ones, K = 0 being a degenerate mse:We present 
th& linktorepresentations ofextcndedq-oscillaroralgebraaa+-qn+a = q-N olnainedearlier. 
We give examples of all representations. Besides standard ones, we descdbe a new non-Fock 
representation of the Macfarlane type. 

1. Introduction 

The Heisenberg oscillator algebra of annihilaton and creation operators plays a central role 
in the quantum physics and in the theory of representations of Lie groups. Similarly, the 
q-oscillator algebra already known to Heisenberg (as mentioned in [ 11) and rediscovered 
by many other authors [2-9] is important for the construction of q-deformed Lie algebras. 
The q-oscillators appear basically either in the form 

bb+ - q2b+b = 1 

aa+ - qa+a = q-N 
[ N ,  a] = -a 

(1) 

or 

(2) [ N ,  a'] = a+. 

While (1) is a deformation of the original oscillator algebra 

bob: - b:bo = 1 

aOu,i - Gao = 1 

(3) 

Equation (2) is a deformation of the extended oscillator algebra 

(4) [ N .  a01 = -ac [ N ,  = c$. 

We stress that (3) and (4) are different objects, although they are closely related. Putting 
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where w is a real parameter and M = b,fbo, we obtain a particular realization of algebra (4) 
in terms of algebra (3). It is well known that all unitary irreducible representations of (4) 
are expressed in this way in terms of a unique (up to equivalence) unitary representation of 
(3) (see e.g. 111,121). The additional parameter w is related to the central,element 

Z=N-a'a (6) 
of algebra (4) (which is identically equal to zero in the algebra (3)). 

In this paper we extend these results to the unitary irreducible representations of the q- 
oscillator algebras (1) and (2). The representations of q-oscillator algebras were investigated 
in [13-161. Reference [14] deals with the general algebraic properties of irreducible 
epresentations of q-oscillator algebras over an arbitrary field. The unitary irreducible 
representations of the q-oscillator algebra (2) were investigated in [15,16]. 

In section 2 we classify unitary irreducible representations of the q-oscillator algebra 
(l), and we show that their relation to unitary irreducible representations of the algebra (2) 
is given by a direct generalization of (5)  and (6). Section 3 contains particular realizations 
of all representations in question. Besides standard representations, we discuss a new non- 
Fock representation of the Macfarlane type (proposed originaly in the Fwk case). Section 4 
presents concluding remarks. 

2. Classification theorem 

The unitary irreducible representations of the 4-oscillator algebra (1) are classified by the 
following 
Theorem 1. Let b be a closed densely defined operator in a Hilbert space 'H, let b+ be the 
adjoint of b, and suppose that 

bb' - q'b'b = 1 q t 0 (7) 
that is, (7) holds on a dense domain &+ = &+b. Then b+b is self-adjoint, and the 
irreducible representations of (1) are: 

(A) the Fock representation for any q > 0 with a non-degenerate spectrum of b+b given 
by the formula 

1 - q =  
Ak = - -. -.Irk] 

1--2 
k = 0 , 3 , 2  ,... 

([k] = k for q = 1). If 0 < 4 < 1, the operators b and b' are bounded, 

b'b given by 
(B) the non-Fock representations for 0 < 4 < 1 with the non-degenerate spectrum of 

4 = 1+42X+2r =:{k+y] k c Z  
1 - q z  

and the representations are classified by y E 10, l), and 

b'b = bb' = (1 -&-'I. 
(C) the degenerate representation for 0 < q < 1 with 

To prove this theorem we define the self-adjoint operator 

K = bb' - b'b. 
From equation (7) it follows that K has the property 

K b  = q-'bK Kb' = q Z b f K .  
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This equation gives 

b+Kb = q-'bibK bKb+ = q 2 b b f K .  

Since b'b and bb' are positive operators commuting with K ,  we see that K is definite 
on a subspace 'H spanned by vectors (b+)"Ik), bmlk). m = 0,1,2,. . ., where [k) is some 
eigenstate of K .  Thus the representations are classified by the sign of the commutator K .  

The case K = 0 just corresponds to case (C), and (10) follows immediately. 
If K # 0, we put IRI = qZM. From (12) we obtain 

[M, b] -b, [ M ,  b'] = b'. (14) 

The operator exp(2xiM) then commutes with b and b+ and has in any irreducible 
representation the fixed value 

exp(2niM) = exp (2niy) y E 10.1). (15) 

Consequently, M bas a discrete spectrum containing points of the form k+ y ,  with k integer. 
Let lk) be a normalized eigenstate 

Mlk) = (k + Y ) W .  (16) 

Using (14), one can show that b'lk) and blk) are the eigenstates of M (provided that they 
are non-vanishing) to the eigenvalues k + 1 + y and k - 1 + y ,  respectively. 

(A) Let K = qZM =. 0. Then from (7) and (11) we obtain 

As [k + y ] ~  < 0 for k + y c 0, we see that in this case only y = 0 is allowed. Then there 
exists a system of normalized eigenstates Ik), k = 0.~1.2, . . . , such that 

Mlk) = klk) 

b+lk) = [k + 1]'/'1k+ 1) 

k = 0, 1,2,. . . . 
Equation (8) then follows directly. We note that 

(18) 

blk) = [k]"*lk - 1). (19) 

We see that all states lk), k = 1.2, . . . , can be obtained by the repeated action of b+ on 
the vacuum state IO), satisfying b10). We refer to this as 'the Fock case'. 

(B) If K = -q" < 0, then 

As b+b is positive, only 0 
M then satisfy 

q < 1 is allowed. The normalized eigenstates lk), k E Z of 

Mlk) = (k + y)lk) k E 2. (21) 

b+lk) = [k + y + 1]'/*1k + 1) 

Equation (9) follows immediately. In this case 

blk) = ( k  + ~ ] ' ' ~ 1 k  - 1). (22) 

Since now there is no vacuum state, we refer to this as to the non-Fock case. This completes 
the proof of theorem 1. 
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3. Representations 

We describe two types of representations of q-oscillator algebra (l), that is, the Bargmann 
and the Macfarlane representations. 

We briefly describe the Bargmann (holomorphic) represetation in the Fock case (see 
[Z]). The space 'H is spanned by functions of the complex variable z: 

&(Z) = ([kl!)- ' I z k  Z k = 0 , 1 , 2 ,  ... (23) 
where [k]! = [11[21 ... [kl. They are eigenfunctions of the operator M = 
eigenvalue k. The operators b and b+ have the form 

to the 

(a) 1 
b+=z  b=-[MI .  

Z 
In 'H the scalar product is defined by (I$", &) = S,,,, and can be expressed in terms of the 
Jackson integral. 

The functions (23) can be reinterpreted as coefficients of q-coherent states in the basis 
[k), k = 0.1.2,. . . (SIX [15-17]): 

(klz) = +l(y) k = 0, 1,2, .  . . . (5) 
For q > 1, all z E C are admissible, whereas IzI < (1 - q2)-' for 0 < q < 1. 

The standard Macfarlane's q-oscillator representation [6] is defined by the operators 

where a = 8, and 0 c q = exp (-s2) c 1. Operators (26) formally act on a suitable subset 
of the functions defined on the interval J = (-%,+E) and belonging to the Hilbert space 
M J ,  Ih(y)I2Wr where 

h(y) = n[l +e-s'@++')+~pl. (27) 
m 

m=O 

We shall use slightly different Macfarlane representations given by the operators 

They act in a suitable subspace 'H of functions from &(J, dy) specified below. Their 
commutator (11) is 

K = &(I+ e s 2 - ~ ~ ~ ) ( P  T e*"a)(l+ e s z + ~ ~ ) .  (29) 
The upper signs in (28), (29) correspond to the Fock representation in which the 

operators b and b+ are related to 6 and &+ as 

where A(y) = h ( y )  exp($sy) . 
@k(fp) = exp (Zisky), k = 0, 1,2, . . . . The operator expisa acts in 'H as 

b = A(fp)&A-'(p) b+ = A(p)&+A-'(p) 

In thii case the operators b and b+ acts in the space 71 spanned by the functions 

eisa*k(v) = e-hz+k(v). (30) 
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Using this, one can show that the (unnormalized) vacuum state @0(9) satisfying 

K+o(vP) = 4o(~) (31) 

is 

40@) = h ( d  (32) 
with h(p) given in (27). This follows from the relation 

h(p + is) = (1 + e-sl+zs')-'h(p). 

MP) = (Ikl!)-'/2(b+)kMco) ~ (34) 

(33) 
The eigenstats &(p), k = 1,2, . . . , (with the same norm as @&)) are given according to 
(19) as 

where b+ is given in (28) with the upper signs. 
The lower signs in (28). (29) correspond to a new non-Fock repkentation in the 

subspace 7l of &(J, iip) spanned by the functions @&) = exp [2is(k + y)p], k E 2, 
where y E [O, 1) is fixed. In this space the operator exp (isa) acts as 

@dv) k E z. (35) eka@k(p) = e  -2(k++Y)s' 

Obviously, the operator K (given in (29) with lower signs) is negative, so that we are really 
dealing with the non-Fock case. 

The (unnormalized) eigenfunction 6: (p) satisfying 

where 

m 

'I. k(,+,) = n [ l  + e-(b-1)SZ-2is 

"4 

Equation (36) follows from the relations 

k(p +is) = (1 + es2-"')k(p) 

(38) 

(39) 

and the formula (29) for K with lower signs. 

according to (22) as 
The eigenstates &(p), k =. 1,2, ..., (with the same norm as &(p)) are given 

where {Y + kl! = { y  + 1). . . { y  + k], and b and b+ are defined in (28) with lower signs. 
We stress that the parameter y introduced in (35) is identical to the one introduced in (15). 
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4. Concluding Remarks 

We shall first compare our results to the ones found in [IS] for the extended q-oscillator 
algebra. Putting 

N = M + o  n o E R  
= biq-N/Z (43) a = q-N12b 

we obtain from the representations listed in theorem 1 all classes of unitary irreducible 
representations of the extended q-oscillator algebra (2) obtained in [IS]. The additional 
parameter OJ is related to the non-trivial central element of the algebra (2)  found in [lo],  

(44) 
(the analogous quantity in the algebra (1) is identically equal to zero). 

The most important applications of q-oscillators are related to the construction of 
representations of q-deformed Lie algebras. In many cases the applications are based on 
the use of the Hayashi algebra [9] (a kind of the q-deformed Weyl algebra) defined by 
equations (2) and by the relation 

Z = [ N I  - 4- N+la+a 

We note, however, that this is just the relation valid in in unitary Fock representation of 
algebra (2) in the particular case of o = 0. 

The unitary irreducible representations of the Hayashi algebra are uniquely related to 
the unitary irreducible Fock representations of algebra (1). They were intensely used for 
the construction of some representations of q-deformed Lie algebras [5-91. The non-Fock 
representations of algebra (1) were used in [I51 for the conshuction of representations of 
the suq(2) algebra. It would be interesting to extend such constructions with non-Fock 
oscillators to other q-deformed Lie algebras, e.g. along the lines performed in [9] with the 
Fock q-oscillators. 

Moreover, there are many important constructions of represenfations of q-deformed Lie 
algebras (see e.g. [18,19]) but the questions conceming their unitarily usualy remain open. 
We hope that the use of various Fock and non-Fock q-oscillators may shed light on these 
problems. 
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