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Abstract. We classify the unitary irreducible representations of the g-oscillator algebra
bb* — ¢%bth = 1 by the sign of the definite operator X = bb+ — bb: K > 0 corresponds to
Fock representations and X < 0 to non-Fock ones, X = () being a degenerate case.-We present
their link to representations of extended g-oscillator algebra aa* —gata = g~ obtained easlier.
We give examples of all representations. Besides standard ones, we describe a new non-Fock
representation of the Macfarlane type.

1. Introduction

The Heisenberg oscillator algebra of annihilaton and creation operators plays a central role
in the quantum physics and in the theory of representations of Lie groups. Similarly, the
g-oscillator algebra already known to Heisenberg (as mentioned in [1]) and rediscovered
by many other authors [2-9] is important for the construction of g-deformed Lie algebras
The g-oscillators appear basically either in the form

bbt —g*bth =1 1

or
+_gata =g "

[N,a]l =—a [N,a"]1=a". 2)
‘While (1) is a deformation of the original oscillator algebra

bobt —biby =1 (3)
Equation (2} is a deformagion of the extended oscillator algebra

aoaaz' — a('," ap =1 .

[N.al=—ay  [N.af]l=af @
We stress that (3) and (4) are different objects, although they are closely related. Putting

N=M-+‘w we R

ap=by ay = ba"

®
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where @ is a real parameter and M = bg' by, we obtain a particular realization of algebra (4)
in terms of algebra (3). It is well known that all unitary irreducible representations of (4)
are expressed in this way in terms of a enique (up to equivalence) unitary representation of
(3) (see e.g. [11,12]). The additional parameter ¢ is related to the central element

Z=N-ata 6

of algebra (4) (which is identically equal to zero in the algebra (3)).

In this paper we extend these results to the unitary irreducible representations of the g-
oscillator algebras (1) and (2). The representations of g-oscillator algebras were investigated
in [13-16], Reference [14] deals with the general algebraic properties of irreducible
epresentations of g-oscillator algebras over an arbitrary field. The unitary irreducible
representations of the g-oscillator algebra (2) were investigated in [15, 16].

In section 2 we classify unitary irmeducible representations of the g-oscillator algebra
(1), and we show that their relation to unitary irreducible representations of the algebra (2)
is given by a direct generalization of (§) and (6). Section 3 contains particular realizations
of all representations in question. Besides standard representations, we discuss & new non-
Fock representation of the Macfarlane type (proposed originaly in the Fock case). Section 4
presents concluding remarks.

2. Classification theorem

The uvnitary irreducible representations of the g-oscillator algebra (1) are classified by the
following

Theorem 1. Let b be a closed densely defined operator in a Hilbert space 7, let &% be the
adjoint of b, and suppose that

bbt - g%t =1 g>0 )

that is, (7} holds on a dense domain Dpg+ = Dp+p. Then &%) is self-adjoint, and the
irreducible representations of (1) are:

(A) the Fock representation for any ¢ > 0 with a non-degenerate spectrum of &5+ given
by the formula

1—g%
e =

(k] =k for g =1). f 0 <gq < 1, the operators & and " are bounded,

(B) the non-Fock representations for 0 < ¢ < 1 with the non-degenerate spectrum of
b*b given by

= [k] k=0,1,2,... (&)

1 + 2k+2y
Ak=—lz—q2—=:{k+y} keZ ©
and the representations are classified by y €10, 1), and
(C) the degenerate representation for 0 < ¢ < 1 with

bTh=bbt = (1 —¢*) 1. 1o
To prove this theorem we define the self-adjoint operator
K =bb* —b*b. (11)

From equation (7) it follows that X has the property
Kb=g~%bK Kbt = ¢*b*K. (12)
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This equation gives

bYEb =g *pThK Kbt = g%hbt K. (13)
Since b1p and bb™ are positive operators commuting with K, we see that X is definite
on a subspace H spanned by vectors (b1)"|k), B®|k}, m = 0, 1,2, ..., where [k} is some
eigenstate of XK. Thus the representations are classified by the sign of the commutator K.

The case K = 0 just corresponds to case (C), and (10} follows immediately.
If K # 0, we put | K| = ¢g**. From (12) we obtain

[Ma b] = _b; [Mv b+] = b+' (14)

The operator exp (2ziM) then commutes with » and b+ and has in any Hreducible
representation the fixed value

exp (2miM) = exp (2miy) vy €0, B). - (15)

Consequently, M has a discrete spectrum containing points of the form ¥+, with & integer.
Let [k) be a normalized eigenstate

Mlk) =&+ k). (16)

Using (14}, one can show that b¥|k) and bjk) are the eigenstates of M (provided that they
are non-vanishing) to the eigenvalues ¥ + 1+ y and k — 1 + ¥, respectively.
(A) Let K = g*¥ > 0. Then from (7) and (11) we obtain

1~ q2M

1—g2
Asfk+y)<0fork+y <0, we see that in this case only y = 0 is allowed. Then there
exists a system of normalized eigenstates |k}, k= 0,-1,2, ..., such that

Mk =klk)  k=0,1,2,.... (18)

bth =

=[M] . (17)

Equation (8) then follows directly. We note that 7 ]
ik =k + 11"+ 1) blk) = [k]“2k — 1). (19)

We see that all states |k}, k = 1,2,..., can be obtained by the repeated action of ¥ on
the vacuum state |0}, satisfying b|0}. We refer to this as ‘the Fock case’.
(B)If K = —g** < 0, then
14g%

o o
bth = g = {M]). (20)

As bb is positive, only 0 < g < 1 is allowed. The normalized eigenstates |k}, £ € Z of
M then satisfy

Mk} = (k + )|k ke Z. 1)
Equation (9) follows immediately. In this case
bHk) =k +y + 1}k + 1) blky = (k + ¥}k ~ 1). (22)

Since now there is no vacuum state, we refer to this as to the non-Fock case. This completes
the proof of theorem 1.
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3. Representations

We describe two types of representations of g-oscillator algebra (1), that is, the Bargmann
and the Macfarlane representations.

We briefly describe the Bargmann (holomorphic) represetation in the Fock case (see
[2]). The space H is spanned by functions of the complex variable z:

$@) = V2 k=0,1,2,... @)

where [k]! = [1][2]...[k]. They are eigenfunctions of the operator M = z3, to the
eigenvalue k. The operators b and b have the form

bt=z b= %[M]. 24

In ‘H the scalar product is defined by (¢, ¢m) = 8.m, and can be expressed in terms of the
Jackson integral.

The functions (23) can be reinterpreted as coefficients of g-coherent states in the basis
k), k=0,1,2,... (see [15-17]):

Klzy=¢r(y»)  k=0,1,2,.... (25)
For g > 1, all z € C are admissible, whereas jz] < (1 —~g®) T for0 < g < 1.
The standard Macfarlane’s g-oscillator representation [6] is defined by the operators
1
1-¢2
1
1—42

B s [e_—l"lstp — e_—is‘rpeisa]

(26

Bt = [e2iw _ cisaeisqz]

where 8 = 3, and 0 < g = exp (—s2) < 1. Operators (26) formally act on a suitable subset
of the functions defined on the interval J = (—£, +-£) and belonging to the Hilbert space

L7, |R(p)I* dp), where

=]

h(g) = [[[1 + e~ CriDizioey @n
m=0

We shall use slightly different Macfarlane representations given by the operators

b=

eI F (7 )]
1 (28)

pt [eﬁw ¥ eird (eﬁsrp + e_‘;z)].

1—4g2

They act in a suitable subspace H of functions from £,(J, dg) specified below. Their
commutator (11) is

K = (1 + ¢ 5P ("0 5 ™) (1 + e HE0), 29)

The upper signs in (28), (29) correspond to the Fock representation in which the
operators b and b are related to b and b as

b=A@bA(p) bt =A(@ETA T (p)

where A(g) = h(gp) exp(isp) .
In this case the operators & and b* acts in the space H spanned by the functions
(@) = exp Qiskp), £ =0, 1,2, .... The operator expisd acts in ¥ as

(@) = e Y (). (30)



Unitary representations of the q-oscillator algebra 2049

Using this, one can show that the (unnormalized) vacuum state ¢y(p) satisfying

K ¢o(p) = dole) 3L
is

golp) = h(p) (32)
with (@) given in (27). This follows from the relation

hip +is) = (1+ e~ sy~ 0y, (33)

The eigenstates ¢ (), k = 1,2, ..., (with the same norm as ¢ (p)) are given according to
(19) as .

$:(p) = (KT 2 (Yoo (). ' (34)

where b is given in (28) with the upper signs.

The lower signs in (28), (29) correspond to a new non-Fock representation in the
subspace M of L3(J, dy) spanned by the functions ¥ (p) = exp[2is(k+ v)p), &k € Z,
where y € [0, 1) is fixed. In this space the operator exp (isd) acts as

M (p) = e X ye) ke Z. . (35)

Obviously, the operator K (given in (29} with lower signs) is negative, so that we are really
dealing with the non-Fock case.
The (unnormalized) elgenfuncuon 4’0 () satisfying

—K 9§ (y) = ¢ (p) (36)
is given by the formuia

1 & ; ’
Yio) = e a,edstmtye 37
¢ (@) k(w; m 37
where
e 14 o= Un+y)s?
Oy = ™™ 1—[1 ——— ] (38)
n=
-2 s
k(p) = [ J11 +e~@rDs =20, (39)
n=1
Equation (36) follows from the relations
1— e 2w’
— af2m=1)s? _
am—l =g g 1 + e"'z(m'i'}’)s? am (40)
k(g +is) = (1 + e~ Z0)(p) @41)
and the formula (29) for K with lower signs.
The eigenstates ¢}, (), k¥ =-1,2,..., (with the same norm as ¢} (g)) are given
according to (22) as
Vo= +k_1 —I/Zbk}’
Ye=0ly h ¢ (@) @)

¢ =y + K072 Yol ()

where {y + &} = {y +1}...{y + £}, and b and 5™ are defined in (28) with lower signs.
We stress that the parameter y introduced in (35) is identical to the one introduced in (15).
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4, Concluding Remarks

‘We shall first compare our results to the ones found in [15)] for the extended g-oscillator
algebra. Putting

N=M+w nwe R

43
a=gq %% at =ptg" “3)

we obtain from the representations listed in theorem 1 all classes of unitary irreducible
representations of the extended g-oscillator algebra (2) obtained in [15]. The additional
parameter w is related to the non-trivial central element of the algebra (2) found in [10],

z — [N] _ —N‘i‘la‘l'a (44)

{the analogous quantity in the algebra (1) is identically equal to zerc).

The most important applications of g-oscillators are related to the construction of
representations of g-deformed Lie algebras. In many cases the applications are based on
the use of the Hayashi algebra [9] (a kind of the g-deformed Wey! algebra) defined by
equations (2) and by the relation

ata=4 "9 : : 45
q—q-! (45)
We note, however, that this is just the relation valid in in unitary Fock representation of
algebra (2) in the particular case of @ = 0.

The unitary irreducible representations of the Hayashi algebra are uniquely related to
the unitary irreducible Fock representations of algebra (1). They were intensely used for
the construction of some representations of g-deformed Lie algebras [5-9]. The non-Fock
representations of algebra (1) were used in [15] for the construction of representations of
the suy(2) algebra. It would be interesting to extend such constructions with non-Fock
oscillators to other g-deformed Lie algebras, e.g. along the lines performed in [9] with the
Fock g-oscillators.

Moreover, there are many important constructions of representations of g-deformed Lie
algebras (see e.g. [18, 19]) but the questions concerning their unitarity usualy remain open.
We hope that the use of various Fock and non-Fock g-oscillators may shed light on these
problems.
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